Sachez mesurer précisément l'aire d'un rectangle


rectangle
Surface d'un rectangle = A * B


Le calcul de l’aire d’un rectangle est une question qui peut se poser à tout moment au cours de la scolarité d’un étudiant, que ce soit là l’élément principal de la leçon ou bien encore qu’il s’agisse d’une étape afin de procéder à un calcul géométrique plus complexe. Mais la définition de l’aire d’un rectangle peut aussi être utile à de nombreux métiers tels que le bâtiment, pour définir les côtes d’un plan, en infographie, pour déterminer la taille d’un élément dans un ensemble graphique, ou même l’agriculture qui peut nécessiter de définir exactement l’aire d’une parcelle. Voici donc toute la lumière sur ce problème géométrique et sur l’origine du rectangle. Avec nous, calculez l’aire d’un rectangle simplement et précisément.

L’aire du rectangle

Calculez l’aire d’un rectangle en effectuant une opération mathématique de base qui répond à une formule apprise par tous les collégiens en cours de géométrie. Ainsi, l’opération à poser est simplement : Aire = hauteur x largeur. Cette aire s’exprime en unité au carré, de la même façon dont l’on parle de la superficie d’une pièce par exemple, ce qui dépend directement de l’aire si la pièce est bien rectangle. Attention, il ne sera pas possible de calculer l’aire si les deux côtés utilisés pour le calcul ne sont pas exprimés dans la même unité de longueur.

Comme l’exemple vaut mieux que la leçon, voyons ensemble le calcul de l’aire d’un rectangle dont la hauteur mesure 8 cm et la largeur mesure 10 cm. Ceci nous donne :

Ce calcul simple nous a permis de définir l’aire du rectangle, ou autrement dit sa surface. Maintenant, imaginons que les unités utilisées soient différentes. Par exemple, pour un rectangle dont les informations sont 8 cm de hauteur, et 2 m de largeur. Voyons l’opération :

L’opération est impossible à réaliser si les unités de longueur ne concordent pas. Il faut alors convertir l’une des deux unités. Faisons le en centimètre ce qui nous donne une largeur de 200 cm qui équivaut à 2 m :



Bénéficiez d'un soutien scolaire personnalisé

Il n'est pas toujours facile d'accompagner ses enfants en les aidant pour leurs devoirs. Pourtant, de nombreux systèmes permettent d'accompagner les enfants dans leurs études. Il existe par exemple le classique soutien scolaire à domicile , mais également, très apprécié des élèves, le soutien scolaire en ligne

Soutien scolaire à domicile



Définir un rectangle

Le rectangle est un quadrilatère, à savoir un polygone formé de quatre côtés. Le quadrilatère peut parfois être nommé tétrapleure ou tétragone. Le rectangle a plusieurs particularités qui le définissent. La première est que ses côtés opposés sont de la même longueur, c'est-à-dire qu’il n’y a qu’une seule valeur de largeur et une seule valeur de hauteur. Ensuite, le rectangle possède quatre angles droits, des angles à 90° exactement. Partant de ces deux principes, côtés opposés de même longueur et angles droits, l’on peut assurer que les droites opposées du rectangle sont parallèles et ne se croisent jamais. A l’intérieur du rectangle, si l’on trace deux segments depuis leurs sommets opposés, ces deux droites vont se croiser en leur milieu, au milieu du rectangle (l’intersection de ses diagonales appelé centre de symétrie).

Enfin, ces diagonales étant équidistantes, les sommets le sont aussi, ce qui permet de tracer un cercle passant par les quatre sommets. L’on appelle ce cercle le cercle circonscrit au rectangle, qui se trouve « inscrit » dans le cercle.

Aire, périmètre et diagonale

Si l’on a pu voir que l’aire du rectangle se calcule en mesurant la hauteur par la largeur, voyons aussi ce qu’il en est des diagonales et du périmètre. En appliquant le théorème de Pythagore, qui précise que a² + b² = c², alors l’on peut dire que la longueur des diagonales est de √a² + √b². Quant au périmètre, il observe une autre formule qui se présente ainsi : périmètre = 2 x (longueur + largeur). Ainsi, pour notre rectangle de 8 cm de hauteur et de 10 cm de largeur, l’on peut noter comme périmètre :

Souvent, on parle de demi-périmètre pour simplifier les choses, notamment dans le milieu de l’architecture :

En complément de lecture nous vous proposont les articles suivant: